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Global Existence in L 1 for the 
Generalized Enskog Equation 
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Various existence theorems are given for the generalized Enskog equation in R 3 

and in a bounded spatial domain with periodic boundary conditions. A very 
general form of the geometric factor Y is allowed, including an explicit space, 
velocity, and time dependence. The method is based on the existence of a 
Liapunov functional, an analog of the H-function in the Boltzmann equation, 
and utilizes a weak compactness argument in L 1. 
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1. I N T R O D U C T I O N  

In this paper  I prove various existence theorems for the generalized Enskog 
equat ion in three dimensions, Until  now, only one-dimensional  and 
near -vacuum global results have been known,  or results with unphysical  
simplifications of the scattering operator.  The main results of this paper  are 
contained in Theorems 2.1-2.3. I solve the Cauchy  problem for the general 
Enskog opera tor  by extending arguments  first in t roduced by DiPerna  and 
Lions. u~ Due to the many  forms of the Enskog equat ion that  are known  
in the literature, I provide below a brief summary  of the subject. 

The Enskog equation, proposed  in 1921 by Enskog (2) to take account  
explicitly of  the finite diameter of molecules, is a successful kinetic model  
of a dense gas consisting of hard  spheres. The revised Enskog equat ion can 
be derived from the B B G K Y  hierarchy by comput ing  the reduced 
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N-particle distribution function from a special grand canonical formalism, 
and by imposing a suitable closure relation for the two-particle distribution 
function (see Van Beijeren and Ernst, (3) Resibois, ~4) and Karkheck and 
Stell (5) for a recent derivation using the maximum-entropy approach). The 
result is 

~+ v ~ =  E(f) (1.1) 

where f(t, x, v) is the one-particle distribution function with t >~ 0, x, v e R 3, 
and the collision operator E(f) is defined by E ( f ) = E + ( f ) - E - ( f )  with 

E+(f)=f f  2 Y(x,x-aa, n) 
R 3 x S +  

x f ( t ,x ,v ' ) f ( t ,x-aa,  w')(e ,v-w)dsdw (1.2a) 

ffR Y(x,x+ae, n) E ( f ) =  3• 

• f ( t ,x ,v) f( t ,x+as,  w)(5, v - w ) & d w  (1.2b) 

Here, a denotes the hard-sphere diameter ( . ,  �9 ) is the inner product in R 3, 
a E $2+ = {5 ~ R3:151 = 1, (v--  w, ~) i> 0}, and the velocities after the colli- 
sion v' w' are given by 

v ' = v - e ( e , v - w ) ,  w '=w+~(e ,v -w)  (1.3) 

The function n(t, x) = ~R3 f(t, x, v) dv is the local density of the gas. 
The way in which the geometric factor Y depends on x, x _  aa, and n 

gives rise to the different models of the Enskog equation found in the 
literature. In the original Enskog equation Y is given in terms of the equi- 
librium pair correlation function g2, which depends on the local density 
only at the point of contact, i.e., Y= g2(n(t, x+_las)). In the revised 
Enskog equation, Y arises as the pair correlation function g2 for a system 
in which, at any time, the only correlations are due to the excluded volume 
of the spheres. In particular, there are no correlations between velocities in 
the system. In this case one can write Y(x, x+_ae, n)= g2(x, x+_asIn(t)), 
where the notation h(xln(t)) means that the quantity h(x) is a functional 
of the local density n(x, t). The term "revised" points to the fact that in the 
revised Enskog equation g2 corresponds to an inhomogeneous rather than 
a homogeneous equilibrium state. In terms of the formal Mayer cluster 
expansion, g2 has the form (6) 

g2(Xl ,  X 2 In(t)) 

=012 l+k~=3(k_2)!fdx3...fdxkn(B)...n(k)g(12]B...k ) (1.4) 
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where n(k)=n(t, xk), xk~R 3, V(12[3-.-k) is the sum of all graphs of k 
labeled points which are biconnected when the Mayer factor f~2 = 012- 1 
is added, 012- 0(Ix1- x2[-  a), and 0 is the Heaviside step function. 

Particular choices of the geometric factor Y in the original and the 
revised Enskog equation give rise to important differences between these 
two equations. The revised equation has an analog of the Boltzmann 
H-theorem. Indeed, R6sibois (4) showed that H(t) given by 

H(t) = ~ f dF~V pN(t)log[N! pN(t)] (1.5) 
N = 0  

is nonincreasing in t~>0, where pu(t) is the approximate N-particle dis- 
tribution function, and that (at least formally) the revised Enskog equation 
drives the gas confined in a box with periodic boundary conditions toward 
the absolute Maxwellian. 

The function H(t) given in (1.5) can be rewritten in the form (ref. 4, 
p. 6oo) 

H(t) = f f  f(t, x, v) log f(t ,  x, v) dv dx + H~(t) (1.6) 

where f(t, x, v) is the solution to (1.1), and the potential part HV(t) is given 
in terms of R6sibois' grand canonical formalism, but, unfortunately, not 
explicitly in terms off ( t ,  x, v) and II. This inability to express H v explicitly 
in terms of f and Y has been one stumbling block in obtaining an existence 
theorem for the Enskog equation. I shall show in Section 2 that this 
difficulty in utilizing the H-function can be overcome. 

Finally, the revised Enskog equation has a set of collision invariants 
that, as in the case of the Boltzmann equation, correspond to the conserva- 
tion of mass, momentum, and energy on the macroscopic level. 

The plan of the paper is as follows. In Section 2 I derive basic iden- 
tities for the problem and state the main existence results. In Section 3 
I state and prove a convergence theorem for approximate solutions. The 
convergence theorem, as stated in Section 3, equally applies to the revised 
Enskog equation, the Boltzmann equation, and the Boltzmann-Enskog 
equation (Y-= t). This result unifies the process of solving Enskog-like (or 
Boltzmann) equations through the use of a single Liapunov functional and 
is a generalization of the DiPerna Lions method developed for the 
Boltzmann equation. In Section 4, after deriving a priori estimations for the 
approximate solutions of the truncated Enskog equation, I show that the 
assumptions of the convergence theorem are satisfied in the several cases 
covered by Theorems 2.1-2.3, thus completing the proof of the existence 
theorems stated in Section 2. 

822/59/1-2-30 
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I end this section with a brief review of known existence theorems for 
the original and revised Enskog equation (see ref. 7 for a more detailed 
review). The first local in time existence theorem was obtained by 
Lachowicz. (8) A global in time existence theorem was obtained by Toscani 
and Bellomo (9) in the case of a perturbation of the vacuum. I showed ~176 
that the solution obtained in ref. 9 is actually a classical solution to (1.1) 
if the initial datum is smooth. Furthermore, the asymptotic behavior of 
solutions was obtained in ref. 10. All of the above results deal with the 
original Enskog equation, but with easy modifications can be extended 
to the revised Enskog equation. Cercignani (2~ obtained global in time 
solutions for small initial data in L 1 and Y= 1. 

The quoted results fall in either of two categories: small initial data or 
local in time existence results. For large initial data, Cercignani (11~ obtained 
global in time Ll-solutions in the case of one space dimension and Y= 1. 
Arkeryd (~2) considered the two-dimensional spatial case using a weak com- 
pactness argument in L 1, however, with the range of integration with 
respect to e extended to the whole sphere S 2, together with the assumption 
that Y -  1. Observe that the alteration in the range of integration to the 
whole sphere S 2 has a significant effect on the dynamics of the Enskog 
equation. In fact, the original Enskog equation and the revised equation, 
with integration over $2+, distinguish between forward and backward 
(time-reversed) collisions, while the Boltzmann equation and the alteration 
above, with integration over S 2, are symmetric under forward and back- 
ward collisions. Recently, Arkeryd (13) has obtained a global existence for 
Y= 1 under the assumptions that the initial value is differentiable in x in 
L ~ sense and has sufficiently high moments. 

2. BASIC A PRIORI E S T I M A T I O N S  A N D  F O R M U L A T I O N  
OF THE EXISTENCE RESULTS 

I indicated in the previous section of the form of the geometric factor 
for the revised Enskog equation. Due to the symmetry of g2(xl, x2[n(t)) in 
Xl and x2, given by formula (1.4), the revised Enskog collision operator 
has an analog of the H-function and a set of collision invariants corre-. 
sponding to the conservation of mass, momentum, and energy. These two 
properties play a fundamental role in the existence theorems presented in 
this work. Below I state conditions for Y that will be used throught the 
paper. They not only imply the properties of the revised Enskog collision 
operator mentioned above, but also enlarge significantly the range of 
possible choices for Y. 

I consider Y to be an arbitrary functional of the distribution function 
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f ,  as well possibly as an explicit function of the configuration space 
variables. Following conventional notation, write 

Y==- Y(t, x l ,  vl, x2, v21Af(t)) (2.t) 

where, for each fixed t/>0, A indicates an operator, possibly nonlinear, 
acting on f ,  and I Af( t)  denotes the functional dependence of Y on Af(t). 
! will assume throughout the paper that A and j Af( t)  act in such a 
way that Y in (2.1) is symmetric under the exchange of variables 
Xl, /21 ~ X2, I)2, and that Y is nonnegative for f>~ 0. From now on such Y 
will be called symmetric. It is clear that with A equal to the zeroth moment 
of the distribution function f ,  and functional dependence as in formula 
(1.4), we recover the revised Enskog equation. With the same A, I 
considered ~14) Y that closely resembled the original Enskog equation. In 
that case functional dependence was such that Y reduced to a function of 
the local density at xl and x2, i.e., Y= Y(n(t, x,), n(t, x2)). In both cases 
there is no dependence on velocities v 1 and v2 in (2.1). Another model can 
be obtained by choosing A to be one of the higher moments of f ,  or more 
generally, to be of the following form: A f = 5  (~(x, v ) f ( t ,  x, v)dr. Here, for 
technical reasons, ~b must be such that I~b(x, v)[ ~<const(1 + Iv]h+ Ix] h) for 
some k < 2, i.e., the second moment of f is not allowed as A. An important 
new generalization is obtained when one allows dependence on vl and v2 
in Y. In this case Y, as given by (2.1), resembles the exact two-particle 
correlation function for a hard-sphere gas. Equation (1.1) with Y given by 
(2.1) can be rewritten in the form 

~+ af 
v -~x = E ( f )  = E + ( f )  - E -  ( f )  

with 

(2.2) 

ffR Y(t, x, v', x - a a ,  w ' lAf ( t ) )  E + ( f )  = 3• + 

x f ( t , x , v ' ) f ( t , x - a e ,  w ' ) ( e , v - w ) & d w  (2.3a) 

f f  R Y(t,x,v,x+ae, w[Af(t)) E - ( f )  = 3• 

x f ( t , x , v ) f ( t , x + a e ,  w ) ( a , v - w ) d e d w  (2.3b) 

Equation (2.2) constitutes a basis for more general kinetic theory (see 
ref. 15; here, I consider only the hard-core potential). I will show that such 
a generalized Enskog equation (2.2) possesses a Liapunov functional. This 
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new result makes (2.2) more attractive in spite of the fact that the explicit 
form of Y is unknown. Note that knowledge of the exact two-particle 
correlation function and the one-particle distribution function is equivalent 
to knowledge of the two-particle distribution function. 

Finally, I give a last example of Y that is incorporated in the form 
(2.1). Let W be a function from R + x ( R 3 ) 4 x R x R  into R. For a fixed 
t/> 0, define Y to be 

Y~- m(t, Xl, Vl, x2, 1)2, Kf(t)(Xl,/)1), Kf(t)(x2, u2) ) ( 2 .4 )  

where K is an operator, possible nonlinear, acting on f .  In this case A = K 
and the functional dependence is reduced to the action on the arguments 
of the function W. As in (2.1), W is such that Y is symmetric under the 
exchange of variables xl ,  vl ,~-x2, v2. The above examples indicate the 
large set of possible choices for Y which can be incorporated in formula 
(2.1). 

Now I derive basic properties of (2.2). The first property of E ( f )  is an 
analog of the corresponding identity for the Boltzmann collision operator. 
Identities similar to (35)-(37) of ref. 4 together with the fact that Y is 
symmetric imply that for ~ measurable on R 3 x R 3 and f e  Co(R 3 x R 3) we 
have 

fR3• ~b(x, v) E ( f )  dv dx 
R 3 

= ~  3xR3xR3xS 2 [ tp (x , v ' )+O(x+ae ,  w ' ) - t p ( x , v ) - ~ p ( x + a e ,  w)] 

x f ( t , x , v ) f ( t , x + a e ,  w) Y ( t , x , v , x + a e ,  w lA f ( t ) )  

x ( e , v - w ) & d w d v d x  (2.5) 

Observe that, except for the velocity dependence in Y, (2.5) with 
~ = log  f( t ,  x, v) is identity (37) in ref. 4. 

For f a nonnegative solution of (2.2), and ignoring at this stage any 
integrability conditions, define 

F(t) = tl f ( t ,  x, v) log f ( t ,  x, v) dv dx - I(s) ds (2.6a) 
o JR 3 x R 3 

where 

'ffff  I ( t ) = ~  ~•215215 [ f ( t , x - - a g ,  w) Y ( t , x , v ' , x - a g ,  w ' lAf ( t ) )  

- f ( t ,  x + ae, w) Y(t, x, v, x + ae, w lAf( t ) )]  

x f ( t ,  x, v)(e, v - w )  de dw dv dx (2.6b) 
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Now, multiplying (2.2) by 1 + l o g f  and integrating over (x, l ) ) f fR3x  R 3 
gives 

dF 
II E ( f ) l o g f  d v d x - I ( t )  (2.7) 

dt J JR3 X R 3 

Next, using (2.5) with r = log f together with the inequality y(log y -  log z) 
~> y - z for y, z > 0 yields 

~-~<0 (2.8) 

The inequality (2.8) shows that F(t)  is a Liapunov functional for (2.2). F(t )  
displays the dissipativity of the system governed by the generalized Enskog 
equation. It also can be considered as the analog of the H-function for 
(2.2). Note that in the dilute gas limit, when (2.2) becomes the Boltzmann 
equation, the function F(t )  reduces to the Boltzmann H-function. Further- 
more, F is defined explicitly in terms of f ( t ,  x, v) and Y, in contrast to the 
H-function (1.5) [or (1.6)] obtained by R6sibois. (4) Also, the fact that (2.8) 
is obtained without differentiation with respect to x or use of the continuity 
equation is crucial in the proof of the existence theorems. Indeed, the con- 
tinuity equation used by R6sibois (4) (see also refs. 5 and 15) in obtaining 
(2.8) for the original Liapunov functional cannot be applied to the various 
approximations of the Enskog collision operator that are needed in this 
work. 

The last identity can be obtained by multiplying (2.2) by ( x - t v )  2, 
integrating by parts over x~ R 3, and using (2.5) with r = ( x - t v )  2 along 
with the equality 

(x -- tv') 2 + (x + ae -- tw') 2 

= (x -- tv) 2 + (x + ae--  tw) 2 -- 2at(e ,  v -- w )  (2.9) 

for x, v, w ~ R  3, t ~ R ,  a > 0 ,  e~S+,  and v', w' given in (1.3). The result is 

d f f  R ( x - t v ) 2  f ( t , x , v ) d v d x  
3 x R 3 

3 x R 3 x R 3 x S +  

x f ( t ,  x + ae, w) & dw dv dx (2.10) 

In view of (2.10), the functional defined by 

e(t)= ffR xe3 ( x -  tv)z f ( t '  x '  v) dv dx  (2.11) 
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is another functional that indicates dispativity of the system. In the case of 
the Boltzmann equation, a = 0  and g ( t ) = g ( 0 )  for all t~R. Note that 
(d/dt) g ( t ) < 0  only for positive t and nonnegativef.  In addition, since 
identity (2.10) is true only for the whole space problem, g(t) may not be 
nonincreasing in the case of bounded spatial domain with appriopriate 
boundary conditions. Finally, since g(t) is decreasing for all times, solu- 
tions of (2.2), for the whole space problem, cannot approach an absolute 
Maxwellian. 

Identity (2.5) and inequality (2.8) are crucial in the proof of the 
existence of global solutions of (2.2). One says that a nonnegative 
f ~  L~oo((0, T) x R 3 • R 3) is a mild solution of (2.2) if, for each 0 < T <  o% 
E+-(f)( ., x, v) # eLl(O, T)a.e. in (x, v)fiR3• R 3 and satisfies 

f # ( t , x , v ) - f # ( s , x , v ) =  E(f)  # ( z , x , v )&,  O<s<t<<.T (2.12) 

Here f# ( t ,  x, v)=f( t ,  x + tv, v). Another definition of a solution, intro- 
duced by DiPerna and Lions (1) for the Boltzmann equation, deals with the 
notion of a so-called renormalized solution. One says that a nonnegative 
f ~  L~oc((0, T)• R3• R 3) is a renormalized solution of (2.2) if 

1 
- -  E + - ( f ) e  L~oc((O, T)  • R3 x R 3 ) 
l + f  

and 

~ log(lc~t + f )  + v log(1 + f ) =  1 ~  E( f )  (2.13) 

in 9 '((0,  ~ ) •  R3• R3). One can show, in the same way as in the case of 
the Boltzmann equation (see Lemma II.1 of ref. 1) that f is a renormalized 
solution of (2.2) if and only if it is a mild solution and 

1 
+ L~oc((0 , T)  • R 3 • e 3) 1 +fE (f)~ 

Finally, let F # ( t , x , v ) = ~ o L + ( f ) # ( z , x , v ) d z ,  where L+(f)  is 
defined by E ( f ) =  fL  +(f). If L+( f )~Lloc( (O,T)xR3xR 3) for any 
T >  0, then f is a mild solution of (2.2) if and only if f satisfies 

f# ( t ,  x, v ) - f # ( s ,  x, v ) e x p { -  [ F # ( t ) -  F#(s)] } 

= E+(f)  # (r,x,v) e x p { - [ F # ( t ) - F # ( z ) ] } d v  (2.14) 

for any 0 < s < t ~ <  T and a.e. in (x, v ) ~ R 3 x R  3. 
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Before stating the existence results for (2.2), I impose additional 
regularity conditions on Y. I start with several definitions. For M > 0 define 
the set D M = { f e L ' ( R a x R 3 ) :  f>~O, ~R~• dvdx<~M}. One 
says that Y, given by (2.1), is bounded if, for each T > 0 ,  M > 0 ,  and 
f e D M ,  Y ( t , x , v , x+ae ,  w[Af)  is measurable in ( t , x , v , w , e ) e [ O , T ] x  
R 3 x R 3 x R 3 x S+ ~ W, and supf~D. { II YIIL~(w)} ~< C(M, T) < 0o. Finally, 
a symmetric and bounded Y is regular if there exists a sequence { Yk} of 
approximations of Y such that the following conditions are satisfied: 

(i) For each k>~ 1, Yk is symmetric and bounded, and for each f ,  
geDM, 

ff• sup II~k(t,x,v,x+a~,w[Af) 
2 (v,w) EBk kXS+ 

t e  [0, T] 

- Y~(t, x, v, x+ae,  wlAg)t dx de 

<~ C(k, M, T) N f - grill (2.15) 

where B~ = {(v, w) e R 3 x R3: v = + w z ~< k} and s k = {x e R3: [xl ~< k}. 

(ii) For any Ll-weakly compact sequence {fk} c LI((0, T), DM) with 
the property that the set {fR~ q)fk dv}~_~ is compact in LI((0, T)x R 3) for 
each (p e L~~ T) x R 3 x R3), there is a subsequence {fk,} such that 

Yk,(t, x, v, x+_ae, wlAfk,(t)) i~oo' Y(t, x, v, x+_ae, wlAf(t))  

a.e. in t , x , v ,w ,a  '(2.16) 

Assumption (2.15) guarantees the existence of solutions for a suitable 
truncated problem that will be considered in Section 4. On the other hand, 
pointwise convergence in (2.16) is needed in the proof the convergence 
theorem given in Section 3. 

Note that there exists a large class of Y that are regular. 
Indeed, Y defined by (2.4) with K=SO(x,  v)f( t ,  x, v) dv and !r v)l ~< 
cons t ( l+ lv t~+ lx l  ;~) for some 2 < 2  is regular if W in (2.4) is any 
L~~ that is symmetric. To see this, it is enough to notice that by 
Lusin's theorem, WoRk can be pointwise approximated by C f  functions 
Wi~. Here, Rk, applied to each argument of W, is the radial retraction, i.e, 
Rk(r) = r for r ~< k and Rk(r) = k(r/lrl) for r > k. Since IRk(r1) -- Rk(rz) t <~ 
2 Irl -- r21 for any k/> 1, one easily obtains condition (2.15) for W~ with the 
operator K replaced by Kk=Sl,l<.k r v)f( t ,  X, V) dr. Finally, since 
Rk(r) ~ r and ,L < 2, we obtain convergence in (2.16). In particular, 
the above arguments also imply that Y considered in ref. 14, i.e., Y= 
Y(n(t, xl), n(t, x2)) with Y measurable, bounded, and symmetric as a func- 
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tion of two variables, is regular. Furthermore, the operator K considered 
above can be replaced by any weakly compact linear operator in 
LI(R 3 • R 3) (see Chapter 9 of ref. 16 for more details on weakly compact 
operators). 

Also note that with the notation as in (1.4) and for any i~> 3 

Y= 012 l +k~.3(k_2)! ~ dx3. . . f  g(1213- . -k)  

(2.17) 

is regular. At this time I do not know if the same is true for i = oo. 

T h e o r e m  2.1. Suppose that Y is regular and fo ~> 0 satisfies 

f f R  ( l + v Z + x 2 + l l ~ 1 7 6 1 7 6 1 7 6  (2.18) 
3• R 3 

If either (1) T > 0  is arbitrary and IIf01ILI~R3• is small enough or 
(2) T >  0 is small enough, then there exists a mild solution f(t, x, v) of (2.2) 
such that lim, ~ 0+ f(t, x, v) = fo(x, v) a.e. in (x, v) ~ R 3 • R 3. 

Another important existence result can be obtained if the scattering 
kernel (e, v -  w) in E(f) is replaced by 

L~ • (g, v - w) (2.19) 

where Z~ is the characteristic function of the set {(e, v, w)c  $2+ • R3• R3: 
(e, v -  w)  ~> 7 } and 7 > 0 is arbitrarily small. From a physical point of view 
it means that we eliminate collisions (called the grazing collisions) that 
result in small changes of v' and w' as compared with their precollisional 
values v and w, respectively. Note that a similar cutoff has been common 
in the case of the Boltzmann collision operator. Indeed, the restriction of 
the deflection angle 0 to 0 <~ 0 ~< n/2-7  for some small 7 > 0 results in 
elimination of the grazing collisions. Note, however, that the angular cutoff 
in the case of the Boltzmann equation was needed to handle a singularity 
resulting from an infinite range of interactions of the inverse power poten- 
tials. Here, since we consider only hard spheres, such a singularity does not 
appear. For technical reasons, however, we still need the truncation as in 
(2.19). 

We have the following result. 

T h e o r e m  2.2. Suppose that Y is regular and fo />0  satisfies (2.18). 
Then for any ~ > 0 there exists a global in time mild solution of the 
generalized Enskog equation with the scattering kernel given in (2.19). 
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The final existence theorem deals with the case of Y considered in 
ref. 14: 

Theorem 2.3. Suppose that Y is regular and fo >-- 0 satisfies (2.18). 
In addition, assume that Y= Y(n(t, x l) ,n( t ,  x2)) with Y measurable, 
bounded, and symmetric as a function of two variables has a compact 
support as a function of two variables. Then there exists a global in time 
mild solution f ( t ,  x, v) of (2.2) such that limt~0+ f ( t ,  x, v)=fo(x ,  v) a.e. in 
(X, V) ~ R 3 • R 3. 

Theorem 2.3 also holds for bounded spatial domains with periodic 
boundary conditions. In this case it is convenient to include boundary con- 
ditions in the definition of the spatial domain by considering s a three- 
dimensional torus, i.e., f2=g3/Z 3. Mild and renormalized solutions of 
(2.2) in this case are defined in an analogous way as in the whole-space 
problem. 

The proofs of the above theorems, provided at the end of Section 4, 
are based on the convergence result given in Section 3 (Theorem 3.2) as 
well as on the a priori estimations for the approximate solutions derived in 
Section 4. 

3. C O N V E R G E N C E  OF A P P R O X I M A T E  SOLUTIONS 

The process of solving (2.2) is divided into several steps. The idea is 
to find a suitable truncated version E~ of E for which (2.2) can be solved 
for each n ~> 1. The E n should retain all basic properties of E, in particular, 
identities (2.5) (2.7) together with inequality (2.8). In this section I show 
that under a certain condition [see (3.9)] on the Liapunov function (2.6), 
a sequence of solutions to the truncated Enskog equation converges to a 
mild solution of (2.2). Later, in Section 4, 1 actually prove that (3.9) is 
satisfied in the several cases covered by Theorems 2.1-2.3. 

Consider a nonnegative solution fn to the initial value problem 

+ v ~x - E,,(f,) - E~+(f,) - E2( fn  ), f~(0, x, v) =fo(x, v), 0 < t ~< r 

(3.1) 

En is defined to be the Enskog operator on the right-hand side of (2.2) with 
(e, v - w )  replaced by (e, v - w ) •  Wn. The Y appearing in E + and E -  
of (2.3a) and (2.3b) are replaced by Y~ x X ~ E x 2 + ( x - a e )  2] and 
Y+xX+[x2+(x+ae)2] ,  respectively, where X + ( z ) = l  for [zt~n 2 
and X + ( z ) = 0  otherwise. Here Y+ = Yn(t, x, v, x +_ae, wlAfn(t)), where 
Yn is symmetric, bounded, and satisfies (2.16). Finally, W~= 
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[cos O(1/n + cos 0) -1]  Z,, where Z~ = 1 if v2+ w2<~ n and Z, = 0 otherwise, 
and cos 0 = ( v - w ,  ~) / Iv-  wl. 

In order to obtain a priori estimations for the solution f,(t, x, v) of 
(3.1), [ assume throughout this section that f ,  is a smooth and nonnegative 
solution with the initial value f0 >~ 0 satisfying 

ffR ( l+v2+x2+llogfo(x,v)l) fo(x,v)dvdx<~Co<oO (3,2) 
3x R 3 

The first a priori estimations are the following conservation laws, which 
follow from (2.5) with ~ = 1, v, v2: 

f f .~•  dvdx=f f .~ •  (3.3) 

Next, using (2.10) together with the Cauch~Schwarz  inequality applied to 

gives, uniformly in n ~> l, 

tl x2f,(t, x, v) dv dx <~ C1 s u p  
t e [o ,  T ]  d d R 3 x R 3  

where CI 
fo d~ dx. 

Combining all the above, one has for initial data satisfying (3.2) 

depends on T, on ~fR3• R~ x:fo dv dx, and on ffR3x RS (1 + V 2) 

sup I f  ( l+v2+x2) f~( t ' x 'v )dvdx<~Cr (3.6) 
t ~ [0 ,  T ]  R 3 • R 3 

n > ~ l  

where Cr  depends on T and fo. 
Let l+(t) be defined by 

3 

• Y + x + f , ( t , x , v ) ( e , v - w )  Wnd~dwdvdx (3.7) 
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Then, integration of (2.8) with respect to t yields 

ff R3•163 log+ f , ( t , x , v )dvdx+ I2(s) ds 

<~ ~• log- f~(t ,x ,v)dvdx+ I+(s) ds+Eo (3.8) 

for all t ~ [0, T], where 

Eo = ff fo !log f01 dv dx 
R 3 x R 3 

log-+ (z) -= max{ +log(z), 0} 

Next, use of the inequality z l o g ( z / y ) ) - y  with y = e x p ( - x 2 - v  2) and 
z=f~ together with estimation (3.6) shows that the first term on the 
right-hand side of (3.8) is bounded uniformly in n ) 1 and tE [0, T]. Since, 
by assumption (3.2), Eo < 0% one obtains that 

fi fn(t, x, v) log + fn(t, x, v) ely dx s u p  
O ~ . t ~ T  d d R 3 •  

is bounded uniformly in n ) 1 as long as 

T 

I+(s) ds<<, C2(Co, T ) <  ov (3.9) s u p  
n~>l ~0 

Summarizing all the above, it can be concluded that, for initial data satisfy- 
ing (3.2), bound (3.9) implies that 

sup 
t~ [O,T] 3x 

n>~l 

(l +v2 + xZ + llog fn(t,x, v)J) fn(t,x,v)dvdx<~ C r (3.10) 
R3 

where Cr  depends only on T and fo. 
Estimation (3.10) places the Enskog equation (2.2) in the framework 

of the DiPerna-Lions method developed for the Boltzmann equation. 
Observe that condition (3.9) is superfluous in the case of the Boltzmann 
equation. Indeed, a = 0  and Y= 1 imply that l,+,(t)=-I,7(t) [i.e., I,(t)=-O in 
(2.6b)] for t e  [0, T] and n )  1. Hence the bound (3.10) can be obtained 
directly from inequality (3.8). In fact, in the case of the Boltzmann equation 
we also have Y= Yn = Yn- = Y+ -= 1. 

Note that for Y independent of velocities, and for the Enskog equation 
with integration with respect to e extended to the whole sphere S 2, the 
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Liapunov functional F(t), given in (2.6a), reduces to the Boltzmann 
H-function. Indeed, integration over the whole sphere S 2 implies that I(t) 
defined in (2.6b) vanishes, i.e., I ( t ) -O.  Thus, in this case, too, condition 
(3.9) does not play any role and this equation, except for the multiplicative 
factor Y, is equivalent to the Boltzmann equation. 

Also remark that in the case of one space dimension condition (3.9) is 
satisfied (see ref. 14, p. 169) for any Y that is bounded. 

Finally, observe that if one knows that the local density n(t, x) is 
bounded, then condition (3.9) is always satisfied. In spite of the fact that 
finiteness of n(t, x) is expected for the system of hard spheres, it is not clear 
that this indeed is a property of the generalized or the revised Enskog 
equations. 

Next, I show that condition (3.9) implies also an important gain-loss 
estimation. This estimation, together with (3.10), is fundamental in 
applying the weak compactness argument to the Enskog equation. First, 
one has, for each M > 1, 

E + ( L ) < ~ M f f  R 2 3xS+ 

where 

Y2X2f~( t ,  x, v)fn(t, x -  ae, w)(e, v -  w ) W, de dw 

~t(f,) = ffR3• 2 Y2X2f~( t ,  x, v') f ,( t ,  x--ae,  w') 

1 fn(t' x, v')f~(t, x - a ~ ,  w') ( e , v - w )  W n & dw 
x og f n ( t , x , v ) f . ( t , x - a e ,  w) 

Multiplying (3.1) by 1 + log fn, integrating over (x, v) e R 3 x R 3, and using 
(2.5) with ~ = log f~ gives 

fR f " ( t ' x ' v ) l ~  f ~ 1 7 6 1 7 6  
3xR3 3xR3 

= 2 h(fn) de dw dv dx ds (3.12) 3•215 

for 
1 

h(f . )  = - 2  Y2 X 2  f . (s ,  x, v') f . (s ,  x - a e ,  w') 

x log f " ( s ' x ' v ' ) fn (s ' x -ae 'w ' )  ( ~ , v - w )  Wn 
f.(s, x, v) L(s, x -a~,  w) 

1 + ~ ( L )  (3.11) 
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The inequality z ( l o g z - l o g  y ) / > z - y  implies that for h +(f,,)= 
max{h(fn), 0} one has 

h+(f,)dedwdvdxds<-.sup I~+(s)ds (3.13) 
[0,  T ]  x R 3 x R 3 x R 3 x S2+ n ~> 1 

Finally, (3.2) and (3.10) imply that the left-hand side of (3.12) is bounded. 
Hence, for h-( f~)=max{-h( f~) ,  0}, one has 

f f f f f  [O, T] x R 3 x R 3 x R 3 x $2+ 
h - ( f , )  de dw dv dx ds <~ const(Co, Cr) 

Since 

f f f dv dx ds 
[0,  T ]  x R 3 x R 3 

2 [O, T] x R3x  R3x  R3x  S + 
2[h +(f , )  + h -  (f~)] de dw dv dx ds 

it can be concluded that under condition (3.9) 

sup Jl c~(f.)II L~((o, r) • R3 • R~) ~< C(Co, Cr) < oo 
n ~ > l  

(3.14) 

Inequality (3.11) is an analog of the gain loss estimation for the 
Boltzmann collision operator. (1) Note that the first term on the right-hand 
side of (3.11) is not exactly the loss term of En(fn). Furthermore, in the 
case of the Boltzmann equation, :~(fn) in (3.11) is replaced by 

~ ( L ) =  ffR~• EL(t, x, v') f,(t, x, w ' ) -  L(t,  x, v) f,,(t, x, w)] 

f~(t, x, v') f,(t, x, w') 
x log B(O, v - w) de dw 

L(t, x, ~)L(t, x, w) 

Since ~8(fn)~>0 and identity (3.12) holds with h(fn) replaced by -c~B(fn), 
one obtains (3.14) for ~e(f , )  directly from (3.12). Similar simplification of 
the gain-loss estimation is achieved for the Enskog equation with integra- 
tion in e performed over the whole S 2. However, for the Enskog equation 
with its full dynamics, (3.9) was needed in order to obtain a uniform 
Ll-bound on ~(f,). 

The last ingredient needed for convergence of f,, to a mild solution of 
(2.2) is a compactness result due to Golse et al:, (17) which applies to general 
transport equations. Below I state a version directly applicable in the 
present setting (see Corollary IV.1 of ref. 1). 
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L e m m a  3.0. Suppose that f , ,  g, eL~oo((O, T ) x R 3 x R  3) satisfy 

T~J'~ ~f + V ~ x = g  ~ (3.15) 

in 9'((0,  T) •  3 • R3), and for each compact set K of (0, T)• R 3 • R 3, 
the sequences {f,} and {g,} are weakly compact in LI((0, T) • R 3 • R 3) 
and LI(K), respectively. Then for all qgeLl((0, T)•215  3) the set 
{~R3 (Pf, dr} = {~R3 ~oT~tg, dr} is compact in LI((0, T)x R3). 

In other words, the velocity averaged operator T2 -1 behaves in a 
similar way to the inverse of an elliptic operator. Recall that T~ -1 may be 
singular only on the set of the characteristic direction. Velocity averaging 
compensates for the lack of regularity in the characteristic direction of the 
hyperbolic operator T~. 

Finally, the following simple lemma will be used in the proof of 
Theorem 3.2 (see Theorem 4.21.10, p. 279 of ref. 16). 

I . emma  3.1. Assume that gn and h, are measurable on S = (0, T) x 
R 3 • R 3. W e  have :  

(i) ~ z h n g ~ s h g  ifg.--*g weakly in L t, SUpn~> 1 Ilh~llL~< 0% and 
h~ ~ h a.e. 

(ii) ~s h. g~ ~ ~z hg if h~ ~ h weakly in L ~, g.  ---, g strongly in L l, and 
sup.~> t IIh.llL~ < o0, 

T h e o r e m  3.2. Let {f .}  be a sequence of nonnegative and mild 
solutions of (3.1) with the initial value fo satisfying (3.2). In addition, 
assume that the following are satisfied: 

sup. >1 ~ ~ I+~ (s) ds ~< CT < 0% where I .  + (s) is defined in (3.7) 

sup,~ EO, r],,~>~ ~R3• [1 + v 2 + x 2 +  Ilogf,(t,x,v)l]f~(t,x,v)dvdx 

(i) 
(ii) 

~ C T <  O0 

(iii) For each n>~ 1, f,~L~176 T)• 3) 

Then there exists a subsequence {fn,} converging weakly in Ll((0, T)• 
R 3 X R 3) tO a mild solution f of (2.2). 

Assumption (i) of Theorem 3.2, i.e., condition (3.9) imposed on the 
Liapunov functional F(t), was essential in deriving the a priori estimation 
(3.10) for smooth solutions of (3.1). Due to the form of En in Eq. (3.1), a 
solution fn of the truncated problem may not be necessary smooth. In 
Theorem 3.2 we start with a mild solution of (3.1) and assume (ii). In 
Section 4 I will show how to derive (ii) from (i) for f ,  not necessary 
smooth, and will prove (3.9) in the cases considered by Theorems 2.1-2.3. 
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Conditions (ii) and (iii) also imply that for each n~>l, E+(fn)ELIc~ 
L~((0, T) x R 3 x R3), thus making each fn a renormalized solution of (3.1), 
as well as a solution of the exponential multiplier form (2.14). 

Theorem 3.2 can be viewed as a stability result for the Enskog equa- 
tion, as well as a convergence theorem for approximate solutions. As 
opposed to the DiPerna-Lions work (1~ for the Boltzmann equation, I do 
not treat separately the cases for which the scattering kernel B(O, Iv-w]) 
is bounded integrable and unbounded nonintegrable, as a function of v - w 
[B(O, Iv -  w[)= (e, v -  w) for the hard-sphere model]. 

The proof is preceded by several preliminary results. In the rest of this 
section {f,} denotes the sequence (or subsequence) of nonnegative and 
mild solutions of (3.1) given in Theorem 3.2 with properties (i)-(iii), Z ' -  
(0, T) x R 3 x R  3, and S R - ( 0 ,  T)xR3XBR,  where BR={z~R3: ]z[~<R} 
for any R > 0. The proofs of convergence in (3.18) of the first proposition, 
as well as convergence in (3.32) of the following proposition, utilize a 
delicate argument based on the nonnegativity of f ,  and ~o. This is due to 
the fact that in the Enskog collision operator one of the spatial arguments 
is shifted to x _+ ae. 

Proposition 3.3. The sequence {f,} is weakly compact in L1(2) 
and there exists a nonnegative f such that 

suv 
t ~ [ 0 ,  T ]  R 3 x R 3 

In addition, for each ~0 with (1 + Ixlk+ Ivlk) -1 
one has 

j~ f n q )dr ' f R f ~ o dv 
3 n ~  3 

and 

[1 + v 2 + x 2 + ]log f ( t ,  x, v)l ] f(t, x, v) dv dx <~ C'r< oc 

(3.16) 

~oeL~(Z) and 0~<k<2,  

in LI((0, T) x R 3) (3.17) 

L,+(fn) n ~  ' L+-(f) in LI(,-Y'R) (3.18) 

for any R > 0, where 

L~(f . )  = fir 3 • Y ~ x + L ( t '  x + e, w) (e ,  ~ - w> w~ & dw 

and 

L+-(f) =ffR3• Y(t, x, v, x++_g, wXAf(t))f(t, x+  e, w)(e, v -  w) de dw 
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Proof. Assumption (ii) of Theorem 3.2 and the Dunford-Pettis 
theorem (Theorem 4.21.2, p. 274 of ref. 16) imply that {f,} is weakly com- 
pact in L~(S). Without loss of generality, one may assume that fn ~ f  
weakly in LI(s) ,  where 0 ~<fe LI(s).  By Fatou's lemma 

ff ( l+vZ+xZ)f( t ,x ,v)dvdx<~C~ a.e. in te  [0, T] (3.19) 
R 3 • R 3 

Now (3.16) will follow if it is shown that 

ff  f log f dv dx <~ lim inf ] ]  f ,  log f ,  dv dx a.e. in t s [0, T] 
R 3 x  R 3 n ~  co d J  R 3 •  R 3 

(3.20) 

However, since z logz  is convex, lower weak semicontinuity of 
~R3 • R~ f log f dv dx is equivalent to lower semicontinuity. Therefore, it is 
enough to show (3.20) for f ,  converging strongly to f in LI(R 3 x R3). 
In addition, because of (ii) of Theorem 3.2, one can further assume 
that flf.--*flfin LI(R3xR3), where f l=l+[xl+lv[.  Since f ,  log- f~<  
flf ,+exp(-fl),  one sees that, by passing to a subsequence if necessary, 
f~ log f ,  ~ f l o g  f in LI(R 3 x R3). Hence, 

liminff~g~ 3•176  R3• f d v d x  

where c~ = sup, >~ ~R~• R3 fn log f ,  dv dx. Fatou's lemma applied to the last 
inequality implies (3.20). 

Now I prove (3.17). First, for each & > 0  and R > 0 ,  assumption (ii) of 
Theorem 3.2 and the fact that the range of e is a bounded set imply that 
the two sequences (corresponding to " _ " )  

{ l+@,, (Pf fn)  + + w) Wn} (3.21) YyX; f , (~ ,  v -  

as weakly compact in LI(N) with N-- (0, T) x R 3 x B R x R 3 x $2+. Here 
(P~fn)(t ,x ,w,e)=f,( t ,x+ae,  w). By choosing the sequence in (3.21) 

2 &dw corresponding to " + "  together with the fact that the integral ~R3• s+ 
is a bounded operator from L~(N) to Lt(SR), one obtains that for each 
&>0 and R > 0  the sequence {E2(fn)/(l+&fn)} is weakly compact in 
LI(SR). By taking the sequence in (3.21) corresponding to " - "  one obtains 
that the sequence {G,(f,)/(1 + &f,)} is weakly compact in L~(-r~), where 

f•n Y, ,X~f , ( t , x ,v ) fn( t , x -ae ,  w ) (~ , v -w  ) W,d~dw Gn(fn) = 3• + 
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Now the gain-loss estimation (3.11), together with bound (3.14), implies 
that for each 6 > 0  and R > 0  the sequence {E~+(f,)/(l+af~)} is weakly 
compact in LI(Xe). 

Consider f a  = (1/6) log(1 + af,) for 6 > 0 and observe that 0 ~<fa ~<f~. 
Thus, the sequence {fa,},%~ is weakly compact in L~(Z'). Furthermore, fa, 
satisfies 

~? a 0 f  a _  1 
~ f , ,  + v 3x 1 + ~ , ,  E,,(f,,) (3.22) 

in ~ '((0,  o o ) x R 3 x R 3 ) .  Therefore, Lemma 3.0 implies that for all 
q0 e L~~ one has 

fR 3fan(pdv n ~ &  > fR3 fa~'~ in LI((O,T) xR ~) (3.23) 

where fa,  after passing to subsequence if necessary, is the weak limit of 
{ f  a}. I claim that (3.17) follows for q0 e L~~ if it can be shown that 

sup sup I l f , , - - f 6 n l [ L ~ ( R 3 •  0 (3.24) 
n~>l /E [0, T ]  

Indeed, since the norm is lower weakly semicontinuous, one obtains from 
(3.24) 

Hf-fallcl(z)<~T sup liminf [[ f ,  - fn  1[ LI(R3 • R31 S T S V - *  0 (3.25) 
r~ [0, T ]  n ~ m  

and 

;RBfn~odv=fR3(f.--fa)~pdv+fR3(fa~--fa)qodv+fRBfa~pdv (3.26) 

Now the application of (3.23)-(3.25) gives (3.17) for q~EL~176 In order 
to show (3.24), notice that 

1 
0 ~ s - ~ l o g ( 1  +as )  

= sOR(a) + s;( {, >~ R} (3.27) 

where O R ( g ) ~  0 locally uniformly in R and ZA denotes the charac- 
teristic function of A. Next, assumption (ii) of Theorem 3.2 implies that 

sup sup J j  ,f~)~{rn>Ridvdx 
n~>l t~  [0, T]  R 3 x R ~  

R ~ o o  
,0 

822/59/1-2~31 
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thus completing the proof of (3.17) for (p s L~(~r). Finally, combination of 
(3.16) together with the fact that 0~<k<2 gives (3.17) for g0 with 
(l+lxl~+lvl k) xr#~L~(Z). 

Now I proceed to the proof of (3.18). First, observe that 

f f R 3 •  Y 1 + ( P + f n ) ( e , v - w ) d e d w  , L+-(f) in L1(XR) (3.28) 
n - - t o o  

where Y f  = Y(t, x, v, x • e, wl Af(t)). Indeed, since by (3.17) the sequence 

{ff, + +  } 3xR3 Y[(Pzf~ I(~, v - w ) l  clw cl8 

is compact in LI(NR), and the integrand above is nonnegative, one obtains, 
after interchanging the order of integration and passing to a subsequence 
if necessary, 

ffR r[ fAt ,  x+_a,w)(~,v-w)cleclw 
3xS2+ 

~g• a.e. in (t ,x,  v ) e X e  

(3.29) 

for some measurable functions g-+. On the other hand, using the same 
argument as for the sequences in (3.21) gives 

p/, 

II Y f ( P + L ) ( e , v - w ) d a d w  , L+-(f) 
JO R 3 •  n ~ oo 

Now, (3.29) in combination with (3.30) implies (3.28). 
Next, I claim that 

weakly in LI(XR) 

(3.30) 

f f R  ]Y+X + Wn - Y f  (P+f~) (e, v - w)  de dw , 0  in LI(L'R) 
3 x S 2  + n ~  

(3.31) 

By the convergence indicated in (2.16) and the definitions of X + and Wn 
one has, for a subsequence if necessary, 

[ + + Y ; J ( ~ W n - - Y f [  n~oo 0 a.e. in t ,  x , v , w , e  

As before [see (3.21)], the sequence {(P+fn)(e,  v - w ) }  is weakly com- 
pact in LI(N); thus, the convergence in (3.31) follows from (i) of 
Lemma 3.1. Now combination of (3.28) and (3.31) completes the proof of 
(3.18). II 
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Propos i t i on  3.4. For all R > 0 and all 0 ~< (p ~ L~(X), one has 

R3 n ~ o~ R3 

In addition, 

and 

481 

in measure on (0, T)x BR 

(3.32) 

E+-(f)( t ,x , . )eLt(R~) a.e. i n ( t , x ) ~ ( O , T ) x R  3 

1 
1 + r E - ,  ( f )~L~((O'  T); L~(R 3 x BR)) 

ProoL I first prove (3.32) for E2(fn ). Observe that (3.17) also 
implies that 

fR3f,,On dv~;%o~ , fR3fOdv i n L l ( ( O , T ) x R  3) (3.33) 

for ~. . ~  ~ a,e. in (t,x, v)~X, and 

sup ~--TG~,.., ~ < oo 
n>~l I ~- IU] L~(Z)  

Indeed, 

To show that the first term in (3.34) converges to 0 in L~((0, T) x R3), use 
the same argument that was given in the proof of (3.31) [note that the 
sequence {(1+ Ivl)fn} is weakly compact]. Now, (3.17) completes the 
proof of (3.33). 

Next, because of (3.17)-(3.18), the sequence 

1 1 (fn)) 
+ Lo(Lj 

with 

f f R  ( l+]wl ) f , ( t , x+ac ,  w ) & d w  L~ = 3• 
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converges to 

1 + L o ( f )  
L+(f) pointwise a.e. in (t, x, v) e X 

Thus, for any ~o~L~176 (3.33) with 

1 

~ " -  1 + L 0 ( L ) L + ( L ) q ~  

implies that 

1 
1 + [o(f.) f~ E2(L)~o dv 

' f - ~  ~ 1 + L o ( f )  i~ 
E-(f)~o dv in LI((0, T) • R 3) (3.35) 

This completes the proof of (3.32) for En(fn ). Observe that so far use has 
ot been made of the nonnegativity of q~. 

By the change of the variables (v, w) ~ (v', w') and e' = -e ,  one has 

fR~ ~~ (f") dr= fR3fn ( ffR3• + ~o'Y + X~ + (P: f.) W~(e, v - w }  de dw) dv 
(3.36) 

a.e. in (t, x, v)eX. Here, ~o' = ~0(t, x, v') and v '=v-~@, v - w } .  Thus, the 
proof of (3.32) for E~+(f~) will be reduced to the case of (3.32) for Es 
if 

f f R  ~o'Y+X + + w) de dw 
3 2 •  

' ffn ~o'U(P+f)(e, v - w> de dw (3.37) 
n ~ o o  3 x S 2  

in LI(Z'R). But convergence in (3.37) follows easily by using arguments 
very similar to those in the proof of (3.18). In particular, a crucial step is 
the pointwise convergence of the sequence 

3xS2 + 

which results from the nonnegativity of the integrand [see the proof of 
(3.29)]. 
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Finally, convergence in measure in (3.32) implies that E + (f)( t ,  x , . )  
LI(R~) a.e. in (t, x ) e  (0, T)x  R 3. The last inclusion follows from the non- 
negativity of f e L l ( X ) .  | 

The next two propositions show that f ,  the weak limit of {f,}, 
satisfies (2.12) and (2.14) with the equality signs replaced by inequalities. 

P r o p o s i t i o n  3.5. For all 0~<s~< t ~< T, f satisfies the following 
inequality: 

f # ( t ,  x, v ) -  f # ( s ,  x, v) e x p { -  [ F # ( t ) - F # ( s ) ] }  

>I E + ( f )  e (r ,x,  v) e x p { - [ F e ( t ) - - F # ( O ] }  dr (3.39) 

a.e. in (x, v) e R 3 X R 3, where F#(t ,  x, v) = ~o L + ( f )  # (r, x, v) dr. 

Proof. Recall that f ,  satisfies the exponential multiplier form 
(2.14) with E( f )  replaced by En(f,). By (3.18), the sequence 
Fff (t, x, v) = ~g L + (f,,) # (r, x, v) dz converges to F # (t, x, v) = ~'o L + ( f )  # 
( r ,x ,v )  dr in C([0, T];Lr 3xR3)).  In addition, the sequence 
e x p { -  [ F ~ ( t ) - F , ~ ( s ) ]  } is uniformly bounded by one and converges to 
e x p { - E F # ( t ) - F # ( s ) ] }  in L(oo(R3xR3), uniformly in O<~s<~t<~T. 
Therefore, in order to prove (3.39), it is enough to show that for all 0 ~< qo E 
g~((0, T) x s )  

T T  

x exp{ - [-F #(t) - F # ( r ) ]  } dr I dv dx ds dt 

<lira inf~ E+ (f,,) ~ (z, x, v) 
n ~ o o  ~0 3 •  3 (p  

x exp{ -- [ g ,  ~ (t) -- g ~  (z)] } dr) dv dx ds dt (3.40) 

Note that the right-hand side of (3.40) is bounded by 2T ItfllLl(z), 
Next observe that 

= qo(t, s, x - w, v) E~+(f.) G~(t, ~, x, v) dv dx dr 
3 x R 3 
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where 

G , ( t , r , x , v ) = e x p { - [ F , ( t , x + ( t - r ) v , v ) - F , ( r , x , v ) ] } ,  0~<G~<~I 

and G~ n ~ ~ ,  G pointwise a.e., with 

G(t, r, x, v) = exp{ - IF(t, x + ( t -  r)v, v) - F(z, x, v)] } 

Now consider the sequence f ~ e = m i n { f , , R }  for 0 < R <  oo. Since 
f ~  ~<f,, the sequence {f~} is weakly compact in L~(S). Because 0 ~<z-  
rain{z, R} ~<zz{z~>R/ and {f~} is weakly compact, one also has 

sup sup I I f , , - - f ~ l l L l ( ~ •  ~ ' 0  (3.41) 
n~>l tc [0, T] 

Using the same argument as in (3.25) gives that f R  , f in L~176 T); 
LI(R 3 x R3)), where f R  is the weak limit of the sequence {f~}. 

Define E~ and E ~ ( f )  by 

= Yn XRfn ( t ,  x, v')fn(t, x - a e ,  w')(e, v -  w)  WR de dw 
R 3 x 3 2  

(3.42) 

ER- + ( f )  = IfR3• s2+ Y f  X~fR( t ,  x, v') f ( t ,  x - a e ,  w')(~, v -  w ) WRde dw 

(3.43) 

I claim that for a fixed R <  ~ ,  0~<s~< t~< T, and 0~<q)~L~((0, T) xZ') 
with q5 = q0(t, s, x - rv, v), one has 

nlim~ fj  ffR3• R3 ~p E .  G. dv dx dr = 
3xR3 

(oE+(f)G dv dx dr (3.44) 

Indeed, the change of variables (v, w) ~- (v', w') and e' = - e  combined with 
similar arguments as in the proof of (3.18) leads to the following 
convergence for 0 ~< s ~< t ~< T: 

ffR3 (p(t, s, x -  rv', v') Y#X~fn(r ,  x + ae, w)(e, v -  w)  
$2+ 

x WRG,,(t, r, x, v') de dw 

' tf ( p ( t , s , x - r v ' , v ' )  Y~ -X~ f ( r , x+ae ,  w ) ( e , v - w )  
J JR 2 3• 

x WRG(t, r, x, v') de dw (3.45) 
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in Ll((s, t )x  R3x R3). Since limn_+ oo f ~  = fR  weakly in Li(Z'), the limit in 
(3.44) follows from (ii) of Lemma 3.1. I am now ready to complete the 
proof of (3.40). For a fixed R < co and 0 ~< s ~< t ~< T, 

liminfJ,_oo = R3xR3 c~ 

;/ff  =li ~ R >~ moo 3 • R3 q)E= G= dv dx d~ 

= (oE+(f)G dv dx dr (3.46) 
3• 

Since f e T f  and E[~(f )TE+(f)  pointwise a.e. as RTco, the monotone 
convergence theorem, integration with respect to t and s, and Fatou's 
lemma complete the proof of (3.40) and consequently the proof of Proposi- 
tion 3.5. ] 

C o r o l l a r y  3.6. For each T >  0 and a.e. in (x, v) e R 3 • R 3, 

E+(f)  # eLl(O, T) (3.47) 

Proof. For each T >  0 and a.e. in (x, v) e R 3 x R 3, 

f e+(f) + d= e + ( f )  # [F ~ (T) - F#(s ) ]  } ds <~ exp[F#(T) ]  exp{ 

But F#(s)<..F#(t) a.e. in ( x , v ) e R 3 x R  3 and for O<.s<<.t<~T. Since 
F#(T)eLI (XR)  for any R > 0 ,  inequality (3.39) completes the proof. | 

P r o p o s i t i o n  3.7. For all 0 ~< s ~< t ~< T and a.e. in (x, v) e R 3 x R 3, f 
satisfies the inequality 

;s f # ( t , x , v ) - f e ( s , x , v ) < - . .  E( f )  # ( r , x , v ) d r  (3.48) 

Proof. Observe that, for all O ~ s ~ t < ~ T a n d  a.e. in ( x , v ) E R 3 x R  3, 
f~  satisfies 

r in ]# ) 
" " \ L ~ J  L I + ~ / . J  L+(L)~  dr 

(3.49) 

Using (3.18), the weak convergence of f~, to f~, the weak convergence 
of E+(f=)/(1 +8f~) and h~==fff(1 +c S f , )  to some E~- and h ~, respectively, 
yields for 0 ~< s ~< t ~< T and a.e. in (x, v) e R 3 x R 3 

J; f~#(t, x, v ) - f ~ # ( s ,  x, v)= [E~ -# - h ~ # L + ( f )  # ] dr (3.50) 
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By (3.24)-(3.25), f ~ e  converges to f # in L~(R 3 • .R 3) uniformly in t ~ [0, T]. 
Now,  since 

z 
O<~z l + ~ z  <~3zR+zz{z>~R} 

and {fn } is weakly compact ,  one also has 

sup H f -  ~ h 1[ L~(R3• R3) <~ sup lim inf II f .  - h.ll LI(R3x R 3) ~ 0 
t~ fo, 7"1 ~ Eo, TJ ~ ~ co (3.51) 

Fur thermore ,  h~'ff  as 6 + 0  +, and (3.48) follows f rom (3.50) by letting 
3 ~ 0 + and using the m o n o t o n e  convergence theorem, if it can be shown 
that  

E~-~E+( f )  a.e. in( t ,x ,v)e(O,  T) x R 3 x R  3 (3.52) 

The p roof  of (3.52) follows from (3.32). Indeed, after passing to a sub- 
sequence if necessary, one has, for 0 ~< ~0 ~ L~(X) ,  

~R3 E+ (fn)q) dv ~R3 E+ (f)(p dv 
, a.e. i n ( t , x , v ) e X  (3.53) 

1 + L o ( f ~ )  "-* ~ 1 + Lo(f) 

where Lo(fn) and Lo(f) are the same as in (3.35). Since 

the sequence 

~R3 E~+(L)q~ dv fR 
1 + L o ( L )  ~< LI~IIL~(Z) 3f~dv 

{ S R3_ E + (fn) q~ dr} 
I + Lo(f~) 

is weakly compact in LX((0, T)• R3). Therefore, 

f f fx E~qo lim E+~(fn)q) dvdxdt  dv dx dt <<. 
1 + Lo(f)  , ~ ~ 1 + Lo(fn) 

= f f fz  E+(f)~~ dvdxdt 
1 + Lo(f) 

Since 0 ~< ~o e L~(Z)  was arbi t rary,  

(3.54) 

E~ E+(f) 
~< a.e. in (t, x, v ) e  Z (3.55) 

l + Lo(f) l + Lo(f) 

N o w  (3.55) completes  the p roof  of (3.52) and also the p roof  of 
Propos i t ion  3.7. I 
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Note that by (3.47), E+(f)  # ~LI(O, T), a.e. in (x, v )@R3•  3. Thus, 
(3.48) implies that E - ( f )  # ~ LI(0, T), a.e. in (x, v)~ R3• R 3. The function 
f satisfying (3.39) can be called a supersolution of the exponential multi- 
plier form (2.14), while f satisfying (3.48) can be called a subsolution of the 
mild form (2.12). 

I am now ready to prove the main result of this section. 

Proof of Thoorom 3.2. The function F#(t)  defined in (2.14) is 
absolutely continuous for almost all x, v, and d F # / d t = L + ( f )  # a.e. in t. 
By Propositions 3.5 and 3.7, f #  is absolutely continuous in t for almost all 
x, v. Therefore, f #  exp F # is absolutely continuous in t for almost all x, 
v. Proposition 3.5 implies that 

d 
dt ( f #  exp F #)f> E + ( f )  # exp F # a.e. in t, for almost all x, v (3.56) 

Thus, 
d # 
w - f  >~E(f) # a.e. in t, for almost all x, v (3.57) 
at 

Finally, for almost all x, v, 

;s f # ( t ) -  f#(s)>~ E( f )  #dr  for O<~s<~t (3.58) 

Now Proposition 3.7 combined with (3.58) implies that f is a mild solution 
of (2.2). | 

I end this section by indicating a certain continuity property of 
t~--~f(t)ELl(R 3 x R3). This property has been observed by DiPerna and 
Lions (1) in the case of the Boltzmann equation. From Eq. (3.49) it follows 
that f o r 0 ~ < s ~ < t ~ < T a n d 6 > 0  

Hf~#(t)-- f~#(S)IIL,(R3• <~ I ~ E+(L)  dr (3.59) J, 

Using (3.59) together with (3.24) gives that for each 7 > 0 there exists z > 0 
such that for pt-s] <<,r and uniformly in n~> 1 one has 

II f , e  (t) - f ,~ (s)II L~(e~ • e~) ~< 7 (3.60) 

By passing to the limit n ~ oe in (3.60) and observing that a norm is lower 
weakly semicontinuous, one can deduce that f #  E C([0, T]; L1(R 3 x R3)). 
Finally, using (3.16) and the fact that U(.).  is a jointly strongly continuous 
group in LI(R 3 x R3), one easily obtains f ~  C([0, T]; LI(R 3 x R3)). Here, 
( u ( - t )  f)(t,  x, v)= f ~ ( t ,  x, v). 
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4. EXISTENCE A N D  PROPERTIES OF A P P R O X I M A T E  
SOLUTIONS 

Here, 

In this section I consider for each n >~ 1 the truncated Enskog equation 

f~(O,x,v)--fo,(X,V ), O<t<~T 
(4.1) 

f~ = max { min { f~ n }' p-exp(- x2 - v2) 

where fo is nonnegative and satisfies (3.2). Here p is a small, positive 
constant determined later (see the proof of Theorem 4.4). Observe that 
fon--'fo in LI((O,T)xR3xR 3) as n ~ o e  and, for each n~>l, fo, s 
L~((0, T) x R 3 x R3). Furthermore, g+(t ,  f~) are E+(fn) [see (3.1)] with 
Y~ replaced by 

~ + ( t ,  f . ) -= I1 'f 11 + - f~(t, x, v) dv 
n R 3 

E f ]' x 1+  1 f,(t,x+_ae, v)dv xY~- (4.2) 
n R 3 

The explicit dependence of En on t (through Y,+) has been suppressed in 
the notation up to this point. However, for the purpose of identifying (4.1) 
as a semilinear evolution equation, I have introduced the explicit t 
dependence in gn(t,f~) of (4.1). 

Note that ~n is symmetric, bounded (see Section 2), and satisfies (2.16). 
Thus, the convergence result (Theorem 3.2) also holds for the truncated 
Enskog equation (4.1). I prove that if IIf0llL~R3• is small enough, then 
for each n/> 1, (4.1) has a unique nonnegative solution satisfying conditions 
(i)-(iii) of Theorem 3.2. 

I start with several definitions that set up (4.1) in the framework of a 
semilinear evolution equation. Consider the operator A f - - v . V x f  in 
LI (R  3 x R3). Then A generates a strongly continuous semigroup U(t) in 
LI(R3 x R3). For M > 0 ,  recall the set DM defined in Section 2, 

DM= { f ~LI(R3 x R3): f />  0' ffR3• (1 + v2)f  dv dx <~M} 

Note that DM is closed in LI(R 3 x R3). Now we can rewrite (4.1) with 
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F ( t , f ) = g , ( t , f )  in the form of a semilinear evolution equation in 
Ll (R3xR  3) 

d 
~ f ( t ) + A f = F ( t , f ( t ) ) ,  f (0 )  = fo, O<t<<.T (4.3) 

Note that in (4.3) the subscript n has been suppressed in f and f0. One 
says that a continuous function f from [0, T] into DM c Ll(R 3 x R 3) is a 
weak solution of (4.3) if it satisfies 

f ( t)  = U(t) fo + U(t - s) F(s, f(s)) ds (4.4) 

for t e  [0, T]. The integral in (4.4) is the Riemann integral in LI(R3 x R3). 
In the literature a weak solution of (4.3), defined above, is often called a 
mild solution. Here, however, this name has been reserved for a different 
kind of solution defined in (2.12). Observe that a weak solution of (4.3) is 
always a mild solution. Indeed, it follows from the fact that, for each real 
t, g(t) ~ exists and is equal to g ( - t ) ,  and f# ( t ,  x, v)=  (U( - t ) f ) ( t ,  x, v). 

There are many theorems that guarantee the existence of weak solu- 
tions to semilinear evolution equations of the form given in (4.3) (see, for 
example, Chapter 8 of ref. 18, and in particular Theorem2.1, p. 335 of 
ref. 18). 

T h e o r e m  4.1. With the notation as above and fosDM assume 
that: 

(i) U(t) is a strongly continuous semigroup in L~(R3xR 3) 
generated by A, and U(t): DM --+ DM. 

(ii) F: [0, T] x DM --* DM is continuous and there exists K >  0 such 
that 

NF(t , f ) -F( t ,  g)IIL~(R~• [If--  gllL:~,~• R,~ 

for 0~<t~< T a n d  f ,  g6DM. 

(iii) For ( t , f ) ~ L 0 ,  T ] z D M  

l~m ~nf ~ d is t ( f  + hF(t, f ) ;  D M ) = 0  

where 

dist(f; DM) = inf II f -  g][ LI(R3x R 3) 
g~DM 
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which is the distance o f f  from D , .  Then there exists a unique weak solu- 
tion f of (4.3) on [0, T] for any T > 0 .  

Note that assumption (iii), known as the Nagumo boundary condi- 
tion, guarantees that a solution starting from fo~ D ,  stays in D , .  

Now it is easy to check that for each n/> 1 and with F(t, f )  = g,(t, f ) ,  
assumptions (i)-(iii) of Theorem 4.1 are satisfied. Indeed, it has already 
been indicated that U(t) is a strongly continuous semigroup in LI(R 3 x R3). 
Since 

I1(1 + v  2) U(t)fllL,~.3• I1(1 + v2)flIL'~R~• 

one can deduce the second condition of (i). Next, using (2.15) and (4.2), 
one easily obtains (ii). Note that K in (ii) depends on n and K ~  oo as 
n ~ oo. Finally, due to the form of g~  (t, f ) ,  one has for t/> 0 and f e  DM, 
f+hg,(t, f)>>.O for small enough h > 0 ;  therefore, using (2.5) with 4 =  
1 + v 2 yields (iii). 

Consider the following norm, introduced by Arkeryd, (13) in the context 
of the Enskog equation: 

f f ,  less sup I (U(- t ) f ) ( t ,  x, v)l] dv dx (4.5) I l f l lE -  3• ,~Eo, rl 

where f is measurable and a.e. finite on (0. T )x  R 3 x  R 3. Recall that 
( U ( - t ) f ) ( t , x , v ) = f ( t , x + t v ,  v). This norm can be used to bound the 
integral in (i) of Theorems 3.2. Indeed, one has the following result. 

L e m m a  4.2. I f fn  is a weak solution of (4.1), then 

T fo I+(s)ds<- f ilLIl  (4.6) 

where C -+ = sup,~> l IIq/+( s, f .) l l  Loo(w). 

Proof. First, by a simple change of variables x--+ x + sv, one obtains 

ff. [ s u p  f . ( s , x+sv ,  v)] 
3• O<~s<~T 

x ( e , v - w ) & d s d w ] d v d x  (4.7) 
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Next, following Cercignani (2~ (see also Arkeryd(13)), one has that for 
fixed x, v, and w the Jacobian of the transformation (e,s) 
y = x + s ( v - w ) + a e i s  +(a2(e ,v-w))  i. Therefore, 

f L+-(s) ds 

a ~ II fn IIE sup 
( x , v ) ~  R3 x R 3 3 

C • 

7 
• f.(s(y), y + s(y)w, w) dy dwJ 

V - I ( [ o ,  T]  x 

(4.8) 

which completes the proof. | 

By Lemma 4.2, in order to show that condition (i) of Theorem 3.2 is 
satisfied, it is enough to prove that supn~>tllf,,lle<oo. Note that 
Arkeryd (13~ used the norm rl'llE to obtain an existence theorem for the 
Enskog equation in the case of Y-=-const. Here, the weak compactness 
argument is a main tool of the proof, and therefore ]1. lIE is used only to 
obtain additional properties of the solutions of the truncated problem (4.1). 
Observe that the results of Arkeryd (131 for Y-cons t  cannot be extended to 
the general form of Y considered here. 

I proceed to two preliminary results on the sequence {fn} of 
approximate solutions of the truncated Enskog.equation (4.1). 

Proposit ion 4.3. For eachn>~l, fnsL~((0 ,  T)xR3xR3) .  

Proof. First, note that 

G + ( t , L ) ~ < C l  1 + -  L(t,x,~)dv 
/7 3 

x ;fR3• w' ) (e ,v-w ) W. dedw 

-C~  1 + -  fn(t,x,v) dv Q,+,(fn) (4.9) 
/7 3 

where 

C l = s u p  sup NY2(t,f)]lr oo 
n > l  f C D M  

with W = [ 0 ,  T ] x R  3 x R  3xR  3xS2+. To estimate the right-hand side of 
(4.9), one needs the following integral representation of ~+ Q, (f),  originally 
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obtained by Carleman (p. 32 of ref. 19) for the case of the Boltzmann colli- 
sion operator (a = 0), but easily generalized to the present case: 

0 :  lJtt,, x . . / =  ..f it , ,  x, ~'1J iw'-  ~'L ' , + -cos  0 
3 Pv, v' f l  

x z . f ( t , x - a ( v - v ' ) ( I v - v ' l ) - l , w ' ) d E ' d v  ' (4.10) 

where Pv.e = {z ~ R3: (15- v, z - v)  = 0}, dP' denotes Lebesgue measure on 
Po, v,, and )~n = 1 if v '2+ w'2~< n and )~. = 0 otherwise. Now, combination of 
(4.2), (4.4), and (4.10), together with the Gronwall lemma, gives the 
L~-bound on f~. This bound depends on n and becomes unbounded as 
n --~ 00. | 

It is instructive to consider the corresponding truncated problem in 
the case of the Boltzmann equation. Corresponding to (4.1), the truncated 
Boltzmann problem is 

Of. + v #fn 
0~ ~ x = Q . ( L ) = Q + ( L ) - Q .  (L), 

fn(0, x, v) =fon(X, v), 0 < t ~< T 

with 

and 

• ffRg• fn(t, x, v')fn(t, x, w') B. de dw 

Q2(f . )  = 1 + -  fn(t, x, v) dv 
rl 3 

x ffR3• + f . ( t ,  x, v)fn(t, x, w) B. de dw 

Bn=inf{B(O, Iv--w[), n} 

x icos2(0)(!+cos2 0 ) 1 ]  

• inf{1, [v-w] 1/"} x z .  

where X.= 1 if v2+w2<~n and Z . = 0  otherwise. Here B(O, [ v - w ] )  is the 
scattering kernel with the usual angular cutoff. For  inverse power poten- 
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tials, . ~ ( r ) = r  ', B(O, L v - w l ) = b ( O ) l v - w l  (s-4)/s with s > 2 .  For  the 
hard-sphere model, B(O, ]v - w[) = [v - w[ cos 0 = (v - w, e}. The existence 
theorems for the Boltzmann equation provided in this paper, as well as in 
the original work of DiPerna and Lions, (~) cover all soft and hard poten- 
tials; in fact, they hold for all B(O, I v - w l ) = b ( O ) I v - w l  ~ with - 3 < ) ~ < 2  
and ~s~+ b(O) de < oo. Note that a special form of Bn(O, v -- w)  given above 
is needed to show L~-estimation of the solutions of the truncated problem. 
Indeed, with the notation as in (4.10), one has 

f f R 3 •  f , ,( t ,  x,  v ')  f , ( t ,  x ,  w' )  B~(O, Iv - wl ) & dw 

J R 3 #Ev, ~" 

x B , ( O , [ v ' - - w ' [ ) ] w ' - - v ' [  2 c o s - 2 O d E ' d v '  

Now, it follows that B, removes singularities in cos -2 0 and in ] w ' -  v'[ 2, 
thus enabling one to obtain the relevant L~176 for f~. 

T h e o r e m  4.4. Suppose that either 

C/2 
l] f0]l LI(R 3 x R 3 ) ( 4C 

or, uniformly in t, the sequence {f ,( t)} is uniformly integrable. Then for 
any a > 0  

sup Ilf~ll~< C t f o ,  a, T, C - )  < oe (4.11) 
n~>l 

ProoL  For fixed 0 ~< z < T and R > 0 define 

. { :  .f~ (t, x, v ) =  m{fAz,  x - tv, v), R}, 
i vl <~R 
otherwise (4.12) 

Consider the decomposition of fn into ,~f = J,f"~+--n'fb:, where f ~ ' =  f n -  f b,. 
In the case r = 0 this decomposition has been introduced by Arkeryd. (t3) In 

b~ f o o _  oo addition, define fo~ _= f , (z ,  x, v ) -  f ,  (t, x + tv, v) and = f ,  . 
The idea of the proof is to show that there is a finite partition 

O =  t o <  t~ < t2 < . . .  < t N =  T with the property that for any 1 ~<i~<N, the 
norm [[ f ,[[z restricted to [t~_ 1, t~] is bounded uniformly in n >~ 1. For  this 
purpose define 

'llg[IE-= JJ R [ ess sup I ( U ( - t ) g ) ( t , x , v ) [ ] d v d x  (4.13) 
3• t~[t~_l~t~ ] 
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Next, since for any i/> 0 and n ~> 1, 

it will be enough to estimate e+ xllf~t,[le. Let  us start the process of finding 
the part i t ion {t~}. Using the nonnegativi ty of f , ,  (4.4), and changing 
variables of integration, one has for any 0 < t~ ~< T 

~11 f :~  ~ ~ [I f~176 LI(R3 • R 3) 4- C -  fn(,% x,  D) 
x 2 3xR3xR3 S+ 

x f , ( s , x + a e ,  w ) ( e , v - w ) z , , d e d w d v d x d s  (4.14) 

where Z,,, defined in Section 3 [see Eq. (3.1)], makes the r ight-hand side of 
(4.14) finite. Recall that  for each n >~ 1, f,, e L ~ ( S ) .  Using the decomposi-  
t ion f , -  ~o b0 - - f ,  + f ,  in the r ight-hand side of (4.14), together with the 
change of variables v ~ w, e --, - e ,  and x -  ae ~ x, one obtains 

ill f,"~ E ~ II f~176 L,(R3 • R3) 

4- C -  f fbO~cbO bO uO 
R 3 •  2 [ J n  J n *  4 - 2  If~"~ f . ,  + If~~ �9 I f . . I  } 

x ( e , v - w ) ) ~ & d w d v d x d s  

= II f~176 L'(R~ • R3) 4- NO 4- pO 4- pO (4.15) 

where �9 denotes that  the function is evaluated at the point  (s, x + ae, w). 
For  P1 ~ one has the bound  

32zt2R4(1 + R) tl 
C I1(1 4-v2)f011LI~R3xR3) 

Next, 

128~2R4(1 + R) t 1 
C -  II( 1 4- v 2) fo II LI(R3 • R3) 

and using an argument  very similar to the one used in (4.6)-(4.8), one 
obtains 

pO< C ~ 2 
~ 5 - I l f : ~  

Using the inequality O ~ z - - m i n { z , R } < ~ z ) ~ ( . ~ R } ,  one can deduce that 
[If~176215 converges to zero as R---, oc. Therefore,  from (4.15) and the 
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bounds for pO, k =  1, 2, it follows that there exists t~ > 0  small enough 
for which supn~l 1][f~~ o% and B1 depends only on a, f o e D M ,  
and C- .  

Now suppose that one has found ti for which sup,~>~ i]]f"~"-'IIE<~B~ 
< ~  and tr I claim that it is possible to find ti<t~+~<~Tfor which 

SUpn~> 1 i + 1  utt ]]f~ Ile-.~B~+~ < ~ .  Indeed, instead of (4.15), one has for any 
t i+  1 ~ ( t i ,  T-] 

f"+~ f f f f  ~ Cb',rb',. 2 I f,~"[ rb,, + 

x ( e , v - w ) z n & d w d v d x d s  

= [If~215 + P ~ + P ~  (4.16) 

The bounds for P~ are the same as for pO with k = 1, 2, except that t~ is 
replaced by (t~+x-t~). Similarly, one obtains 

5 pg~< i+ Ill r 
�9 ] / 7  II g 

Now, in the case when {fn(t)} is uniformly integrable, the inequality 
0~<z-min{z ,  R} ~<z)~{z>~R~ together with the fact that 

f i r  (l+v2)f,,dvax=ffR (l+v2)f~ 
3 x R 3  3 x R 3  

implies that II .~o,,,, J n  II LI(R3x R 3) converges to zero as R--, o% uniformly in n >~ 1 
and t ie [0, T]. In the case when 

a 2 

II fo L] L~(R 3 • R3~ < 4 C -  

by choosing p in the definition offon small enough [see (4.1)], one has 
a 2 

IIf0t'IIL,(R3• 4C uniformly in tie [0, T] and n~> 1 

Therefore, we can find ti+l > ti, with t~+~-t~ small enough, for which 
i+~][f~t'lle<~Be+ 1 < o% where Bi+ l depends only on a, f oeDM,  and C- .  
This process can be continued until tN = T. Finally, the inequality 

N N 

i = 1  i = 1  

completes the proof. | 

822/59/1-2-32 
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The main result of this section is as follows. 

T h e o r e m  4.5.  If IIfoIIL~(R3• - ,  then 
solutions of the truncated Enskog equation (4.1) 
(i)-(iii) of Theorem 3.2. 

ProoL Theorem 4.4 and Proposition 4.3 imply that conditions (i) 
and (iii) of Theorem 3.2 are satisfied. The proof of (ii) of Theorem 3.2 is 
divided into several steps. First, note that Eq. (4.4) implies 

f f R  x 2 U ( - t ) f " ( t ) d v d x  
3 x R 3  

= Co + x ~ U ( - s )  e.(s, f . ( s ) )  ds • dx 
3 x R 3 

= Co + ( x - s v )  2 g~(s, f , (s ) )  dv dx ds 
3 x g 3  

the sequence f~ of 
satisfies conditions 

where Co = S~R~• R 3 X2fo dv dx<  Go. Using (2.5) with ~ = ( x - s v )  2 and (2.9), 
we obtain that 

Furthermore, 

; f  
( x -  t~)2 L ctv dx<~ CT< oo sup sup I 1  

n~>l  t E [ 0 ,  T]  "~dR3xR3 

Next, by repeating the same argument as in Section 3, one can deduce that 

x2fn dv dx ~ C3( T) < oo sup sup I t  
n~>l  t E [ 0 ,  T ]  J ' ) R 3 x R 3  

T 

• t ( e , v - w )  2 w n ~ Y ( t , f . )  afofL    
x fn(t, x, v) f , ( t ,  x + ae, w) de dw dv dx dt 

~< C4(T) (4.19) 

Note that C4(T ) does not depend on n. 
In view of Theorem 4.1 and the bound (4.18), it has been shown so far 

that 

c c  
(l +vZ + x 2 ) f n ( t , x , v ) d v d x ~ C s ( T ) <  oo (4.20) sup sup I I  

n >~ 1 t ~ [0, T] ddR3 x R 3 

(4.18) 

(4.17) 
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In order to complete the proof of condition (ii) of Theorem 3.2, one needs 
to have control of f~ from below. Indeed, by multiplying Eq. (4.4) in its 
mild form by 1 + l o g f . ( t )  # and integrating over S, one obtains 

T d  
ff/~3• fo ~ ( f " l ~  dtdvdx  

= IJJ {d~,(t, f~(t))[log f~(t) + 1 ] } # dv dx dt (4.21) 
[0, T ]  x R 3 x R 3 

Since, for each n~>l, ( f , ) # e L ~ ( S )  and H(l+v2)(fn)~llL~(z)~M, the 
integrand on the right-hand side of (4.21) is integrable. However, in order 
to obtain the equality 

f o r d  (,L log f~)(t) # d t  

= (fn log f , ) (T)  ~ - (fo,~ log fon) # a.e. in (x, v) E R 3 • R 3 (4.22) 

one needs the absolute continuity of (fn log f~)(t) # a.e. in (x, v)a R3• R 3. 
Of course, once one knows that Eq. (4.22) holds, one can combine (3.8), 
Lemma 4.2, and Theorem 4.4 to obtain (ii) of Theorem 3.2. 

Now, the absolute continuity can be proven by showing, for example, 
that for n ~> 1, and a.e. in (x, v) e R 3 • R 3, f , ( t )  ~ >>. c(n, x, v) > 0, uniformly 
in t e [-0, T]. Indeed, since log z is Lipschitz continuous for z/> c~ > 0, the 
absolute continuity of f~(t) ~ implies the absolute continuity ( f ,  log fn)(t) # 
a.e. in (x, v) e R 3 x R 3. To find a lower bound of f f f ,  I proceed along the 
line of arguments given in ref. 1. 

I claim that for all t ~ [0, T] 

f n ( t , x , v ) ~ P e x p ( - C n t - l x - t v l 2 - v 2 ) = g  n a.e. i n ( x , v ) 6 R 3 x R  3 
n 

(4.23) 

Since gs  on Z, for some constant Cn [the same constant 
appearing in (4.23)], one can see that 

~?fn + v~f~+ C, , f  >~O 
Ot ex 

in @'((0, T) x R 3 x R 3) (4.24) 

Similarly, for gn, 

a.e. in Z (4.25) 



498 Polewczak 

Now, since f,(0, x, v)~> g~(0, x, v), inequality (4.23) follows from (4.24) 
and (4.25). This completes the proof of (ii) of Theorem 3.2, and conse- 
quently the proof of Theorem 4.5. | 

For arbitrary fo satisfying condition (3.2), one has the following result. 

C o r o l l a r y  4.6. If T > 0  is small enough, then the sequence f ,  of 
solutions of the truncated Enskog equation (4.1) satisfies conditions 
(i)-(iii) of Theorem 3.2. 

Proof. Choose T =  tl, where t~ is defined in the first part of the proof 
of Theorem 4.4. It now follows that (4.11) is satisfied with T replaced by tl. 
Next, identical arguments as in the proof of Theorem 4.5 complete the 
proof of Corollary4.6. | 

Note that, since the weak compactness in L 1 implies the uniform 
integrability, the proofs of Theorems4.4 and 4.5 show that, for the 
sequence f ,  of solutions of (4.1) given in Theorem 4.1, 

sup l l f ,  l le<oor  sup I I  I l og fn ( t , x , v ) l f , ( t , x , v )dvdx<oo  
n~>l  t e  [0, T] ddR3xR3 

n~>l  

Proofs can now be given of the main results of this paper, Theorems 
2.1-2.3. 

Proof of Theorem 2.7. For fo satisfying (2.18), first solve the 
truncated Enskog equation (4.1). In the case (1), Theorem 4.5, and in the 
case (2), Corollary 4.6, show that conditions (i)-(iii) of Theorem 3.2 are 
satisfied. Finally, Theorem 3.2 completes the proof. | 

Proof of Theorem 2.2. It is enough to show that conditions (i)-(iii) 
of Theorem 3.2 are satisfied. By Lemma 4.2, condition (i) will be satisfied 
if it is shown that supn>~l liT.liE< oo. To do this, notice that, with the 
notation as in the proof of Theorem 4.4, 

II f~llE~ < 111 f.llE + E"'T]Ii f~llE (4.26) 

where the first term is the norm IIf, lle restricted to [0, t j |  and with tl the 
same as in the proof of Theorem4.4. Recall that t 1 is such that 
SUpn/> 1 1N fn II e < oo. The second term in (4.26) is the norm II fnll E restricted 
to It1, T]. To estimate it, notice that 

#+(s, fn (s ) )dvdxds  (4.27) 
1 3 
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The change of variables (v, w) ~ (v', w'), e ' =  - e ,  together with an applica- 
tion of the integral form of (2.10) [-with the truncated collision operator as 
in (4.1)] imply that one can bound the second term on the right-hand side 
of inequality (4.27) by C6/~t l ,  with C6 independent of n. This completes the 
proof that (i) of Theorem 3.2 is satisfied. Now one proceeds in exactly the 
same way as in the proof of Theorem 4.5 to show that conditions (ii)-(iii) 
of Theorem 3.2 are satisfied. | 

Proof of Theorem 2.3. As in the proof of Theorem 2.2, it is enough 
to show that (i) of Theorem 3.2 is satisfied. Now, using a very similar 
argument as in (3.10) of ref. 14 gives that supn~>l ~ r I +(s) ds < oe. | 

Note that the compactness of the support of Y assumed in 
Theorem 2.3 can be replaced by a weaker condition on Y, already con- 
sidered in ref. 14: 

sup rY(r, a ) <  ~ (4.28) 
~,a>~0 

Finally, Theorem 2.3 holds for bounded spatial domains with periodic 
boundary conditions. Indeed, notice that for x e l ? - -R3 /Z  3, one also has 
f # ( t ,  x, v ) = f ( t ,  x + t v ,  v), where x + t v  is understood modulo 1. In addi- 
tion, the operator A f=- - v . V x f  generates a strongly continuous group 
( U ( - t ) f ) ( t ,  x, v ) = f e ( t ,  x, v) in LI(f2 x R3). Observe that in this case the 
explicit x 2 term appearing in condition (ii) of Theorem 3.2 (and also in 
Sections 3 and 4) is superfluous. 
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